pUNO1-hSTING-N200
 Expression vector containing N200 isoform human STING (I200N) open reading frame
 Catalog code: puno1-hsting-n200
 https://www.invivogen.com/hsting-n200

For research use only
Version 19K10-MM

PRODUCT INFORMATION

Contents

- $20 \mu \mathrm{~g}$ of lyophilized plasmid DNA
$-2 \times 1 \mathrm{ml}$ blasticidin at $10 \mathrm{mg} / \mathrm{ml}$
Storage and Stability
- Product is shipped at room temperature.
- Lyophilized DNA should be stored at $-20^{\circ} \mathrm{C}$.
- Resuspended DNA should be stored at $-20^{\circ} \mathrm{C}$ and is stable at least for 1 year.
- Store blasticidin at $4^{\circ} \mathrm{C}$ or $-20^{\circ} \mathrm{C}$. ${ }^{*}$
*The expiry date is specified on the product label.

Quality control

- Plasmid construct has been confirmed by restriction analysis and full-length open reading frame (ORF) sequencing.
- Plasmid DNA was purified by ion exchange chromatography.

GENERAL PRODUCT USE

- Subclone gene into another vector. Two unique restriction sites flank the gene, allowing convenient excision. The 5' site is BspEl which is compatible with Agel, Xmal, NgoMIV and SgrAl. The 3' site is Nhel which is compatible with Xbal, Spel, and AvrII.
- Stable gene expression in mammalian cells. pUNO1 plasmids can be used directly in transfection experiments both in vitro and in vivo. pUNO1 plasmids contain the blasticidin-resistance gene (bsr) driven by the CMV promoter/enhancer in tandem with the bacterial EM7 promoter. This allows the amplification of the plasmid in E. coli, as well as the selection of stable clones in mammalian cells using the same selective antibiotic. pUNO1 allows high levels of expression and secretion of the gene product.

METHODS

Plasmid resuspension

Quickly spin the tube containing the lyophilized plasmid to pellet the DNA. To obtain a plasmid solution at $1 \mu \mathrm{~g} / \mu \mathrm{l}$, resuspend the DNA in $20 \mu \mathrm{l}$ of sterile water. Store resuspended plasmid at $-20^{\circ} \mathrm{C}$.
Plasmid amplification and cloning
Plasmid amplification and cloning can be performed in E. coli GT116 or other commonly used laboratory E. coli strains, such as DH5a.

Blasticidin usage

Blasticidin should be used at $25-100 \mu \mathrm{~g} / \mathrm{ml}$ in bacteria and $1-30 \mu \mathrm{~g} / \mathrm{ml}$ in mammalian cells. Blasticidin is supplied as a $10 \mathrm{mg} / \mathrm{ml}$ colorless solution in HEPES buffer.

PLASMID FEATURES

- Bsr (blasticidin resistance gene): The bsr gene from Bacillus cereus encodes a deaminase that confers resistance to the antibiotic blasticidin. The bsr gene is driven by the CMV promoter/enhancer in tandem with the bacterial EM7 promoter. Therefore, blasticidin can be used to select stable mammalian cells transfectants and E. coli transformants.
- CMV promoter \& enhancer drives the expression of the blasticidin resistance in mammalian cells.
- Human STING-N200

ORF size: 1140 bp Cloning fragment size: 1181 bp
STING (stimulator of interferon genes; also known as TMEM173, MITA, MPYS, and ERIS) is essential for the IFN response to microbial or selfDNA, and acts as a direct sensor of cyclic dinucleotides (CDNs). CDNs are important messengers in bacteria, affecting numerous responses of the prokaryotic cell, but also in mammalian cells, acting as agonists of the innate immune response. Studies have revealed that STING variation can affect CDN recognition and signal transduction. The hSTING-N200 isoform harbors a missense mutation (I200N) equivalent to I199N mutation found in the Goldenticket (Gt) mouse strain ${ }^{1,2}$. Residue I200 is buried in the interior of the STING protomer. The I200N mutation results in a null-phenotype with no detectable STING activity ${ }^{1}$.

- EF-1a/HTLV hybrid promoter is a composite promoter comprised of the Elongation Factor-1a (EF-1a) core promoter ${ }^{3}$ and the 5^{\prime} untranslated region of the Human T-Cell Leukemia Virus (HTLV). EF-1a utilizes a type 2 promoter that encodes for a «house keeping» gene. It is expressed at high levels in all cell cycles and lower levels during GO phase. The promoter is also non-tissue specific; it is highly expressed in all cell types. The R segment and part of the U5 sequence (R-U5') of the HTLV Type 1 Long Terminal Repeat ${ }^{4}$ has been coupled to the EF-1a promoter to enhance stability of DNA and RNA. This modification not only increases steady state transcription, but also significantly increases translation efficiency possibly through mRNA stabilization.
- SV40 pAn: The Simian Virus 40 late polyadenylation signal enables efficient cleavage and polyadenylation reactions, resulting in high levels of steady-state mRNA5.
- pMB1 ori is a minimal E. coli origin of replication to limit vector size, but with the same activity as the longer Ori.
- Human beta-Globin polyA is a strong polyadenylation (pAn) signal placed downstream of bsr. The use of beta-globin pAn minimizes interference ${ }^{6}$ and possible recombination events with the SV40 polyadenylation signal.

1. Yin Q.et al., 2012. Cyclic di-GMP sensing via the innate immune signaling protein STING. Mol Cell 46(6):735-45. 2. Sauer JD. et al., 2011. The N-ethyl-N-nitrosourea-induced Goldenticket mouse mutant reveals an essential function of Sting in the in vivo interferon response to Listeria monocytogenes and cyclic dinucleotides. Infect Immun 79(2):68894. 3. Kim D. et al., 1990. Use of the human elongation factor 1a promoter as a versatile and efficient expression system. Gene 91(2):217-23. 4. Takebe Y. et al., 1988. SR alpha promoter: an efficient and versatile mammalian cDNA expression system composed of the simian virus 40 early promoter and the R-U5 segment of human T-cell leukemia virus type 1 long terminal repeat. Mol Cell Biol. 8(1):466-72. 5. Carswell S. \& Alwine J., 1989. Efficiency of utilization of the simian virus 40 late polyadenylation site: effects of upstream sequences. Mol Cell Biol. 9(10):4248-58. 6. Yu J. \& Russell J., 2001. Structural and functional analysis of an mRNP complex that mediates the high stability of human β-globin mRNA. Mol Cell Biol. 21(17):5879-88.

RELATED PRODUCTS

Selection antibiotic Competent E. coli
ant-bl-1 gt116-11

TECHNICAL SUPPORT
InvivoGen USA (Toll-Free): 888-457-5873
InvivoGen USA (International): +1 (858) 457-5873
InvivoGen Europe: +33 (0) 5-62-71-69-39
InvivoGen Hong Kong: +852 3622-3480
E-mail: info@invivogen.com

PvuI (7)
 Sgft (6)
 MfeI (82)
 1 GGATCTGCGATCGCTCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTCCCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACGGGTGCCTA
 101 GAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCGTGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGTATATAAGTGCAGTAGTCGCC

	Psp1406I (203)	HindIII (245)	Bsu36I (291)
201	GTGAACGTTCTTITCGCAACGGGTTTGCCGCCAGAACACAGCTGAAGCTTCGAGGGGCTCGCATCTCTCCTTCACGCGCCCGCCGCCCTACCTGAGGCC		
301	GCCATCCACGCCGGT	GGTGCCTCCTG	GGTCGAGACC
	NgoMI (441)		

BspEI (558)

501 TCTGTTCTGCGCCGTTACAGATCCAAGCTGTGACCGGCGCCTACCTGAGATCACCGGCTCCGGACAGCATGCCCCACTCCAGCCTGCATCCATCCATCCC 1) M P H S S L H P S I P Bsp120I (617)
601 GTGTCCCAGGGGTCACGGGGCCCAGAAGGCAGCCTTGGTTCTGCTGAGTGCCTGCCTGGTGACCCTITGGGGGCTAGGAGAGCCACCAGAGCACACTCTC 11. C P R G H G A Q K A A L V L L S A C L V T L W G L G E P P E H T L SexAI (704)
Asp718 (701)
Asp718 (794)
Acc65I (701) Acc65I (794)
701 CGGTACCTGGTCCTCCACCTAGCCTCCCTGCAGCTGGGACTGCTGTTAAACGGGGTCTGCAGCCTGGCTGAGGAGCTGCGCCACATCCACTCCAGGTACC
 Bsp120I (854)
801 GGGGCAGCTACTGGAGGACTGTGCGGGCCTGCCTGGGCTGCCCCCTCCGCCGTGGGGCCCTGTTGCTGCTGTCCATCTATTTCTACTACTCCCTCCCAAA
 SfiI (970) BgIII (995)
901 TGCGGTCGGCCCGCCCTTCACTTGGATGCTTGCCCTCCTGGGCCTCTCGCAGGCACTGAACATCCTCCTGGGCCTCAAGGGCCTGGCCCCAGCTGAGATC 111. A V G P P F T W M L A L L G L S Q A L N I L L G L K G L A P A E I NcoI (1035) EcoRV (1064)
1001 TCTGCAGTGTGTGAAAAAGGGAATTTCAACGTGGCCCATGGGCTGGCATGGTCATATTACATCGGATATCTGCGGCTGATCCTGCCAGAGCTCCAGGCCC 145 S A V C E K G N F N V A H G L A W S Y Y I G Y L R L I L P E L \quad Q A BstBI (1103)
1101 GGATTCGAACTTACAATCAGCATTACAACAACCTGCTACGGGGTGCAGTGAGCCAGCGGCTGTATAATCTCCTCCCATTGGACTGTGGGGTGCCTGATAA 178 R I R T Y N Q H Y N N L L R G A V S Q R L Y N L L P L D C G V P D N AgeI (1252)
1201 CCTGAGTATGGCTGACCCCAACATTCGCTTCCTGGATAAACTGCCCCAGCAGACCGGTGACCGTGCTGGCATCAAGGATCGGGTTTACAGCAACAGCATC
 1301 TATGAGCTTCTGGAGAACGGGCAGCGGGCGGGCACCTGTGTCCTGGAGTACGCCACCCCCTTGCAGACTTTGTTTGCCATGTCACAATACAGTCAAGCTG 245. Y E L L E N G Q R A G T C V L E Y A T P L Q T L F A M S Q Y S Q A 1401 GCTTTAGCCGGGAGGATAGGCTTGAGCAGGCCAAACTCTTCTGCCGGACACTTGAGGACATCCTGGCAGATGCCCCTGAGTCTCAGAACAACTGCCGCCT 278. G F S R E D R L E Q A K L F C R T L E D I L A D A P E 1501 CATTGCCTACCAGGAACCTGCAGATGACAGCAGCTTCTCGCTGTCCCAGGAGGTTCTCCGGCACCTGCGGCAGGAGGAAAAGGAAGAGGTTACTGTGGGC
 BpuAI (1605) BbsI (1605)
1601 AGCTTGAAGACCTCAGCGGTGCCCAGTACCTCCACGATGTCCCAAGAGCCTGAGCTCCTCATCAGTGGAATGGAAAAGCCCCTCCCTCTCCGCACGGATT 345 S L K T S A V P S T S T M S Q E P E L L I S G M E K P L P L R T D MscI (1745)
NheI (1739)
1701 TCTCTTGAGACCCAGGGTCACCAGGCCAGAGCCTCCAGTGCTAGCTGGCCAGACATGATAAGATACATTGATGAGTTGGGACAAACCACAACTAGAATGC 378 F S •

HpaI (1877) MfeI (1888)
1801 AGTGAAAAAAATGCTTTATTTGTGAAATTTGTGATGCTATTGCTTTATTGTAACCATTATAAGCTGCAATAAACAAGTTAACAACAACAATTGCATTCA

EcoRI (1973)

1901 TTTATGTTTCAGGTTCAGGGGGAGGTGTGGGAGGTTTTTAAAGCAAGTAAAACCTCTACAAATGTGGTATGGAATTCTAAAATACAGCATAGCAAAAC
2001 TTTAACCTCCAAATCAAGCCTCTACTTGAATCCTTTTCTGAGGGATGAATAAGGCATAGGCATCAGGGGCTGTTGCCAATGTGCATTAGCTGTTTGCAGC
2101 CTCACCTTCTTTCATGGAGTTTAAGATATAGTGTATTTTCCCAAGGTTTGAACTAGCTCTTCATTTCTTTATGTTTTAAATGCACTGACCTCCCACATTC
SspI (2212) SwaI (2226)
2201 CCTITTTAGTAAAATATTCAGAAATAATTTAAATACATCATTGCAATGAAAATAAATGTTTTTTATTAGGCAGAATCCAGATGCTCAAGGCCCTTCATAA
2301 TATCCCCCAGTTTAGTAGTTGGACTTAGGGAACAAAGGAACCTTTAATAGAAATTGGACAGCAAGAAAGCGAGCTTCTAGCTTTAGTTCCTGGTGTACTT
2401 GAGGGGGATGAGTCCTATGGTGGTTTGACCAGGTTGCCATCATCTCAATGGCACAAAGCAGTCAGGAGCATAGTCAGATGRTV K
 BstXI (2516)
2501 ATGCCACAGGGGCTGACCACCCTGATGGATCTGTCCACCTCATCAGAGTAGGGGTGCCTGACAGCCACAATGGTGTCAAAGTCCTTCTGCCCGTTGCTCA 101 M G C P S V V R I S R D V E D S Y P H R V A V I T D F D K Q G N $S V$ StuI (2651)
2601 CAGCAGACCCAATGGCAATGGCTTCAGCACAGACAGTGACCCTGCCAATGTAGGCCTCAATGTGGACAGCAGAGATGATCTCCCCAGTCTTGGTCCTGAT 681 A S G I A I A E A C V T V R G I Y A E I H V A S I I E G T K T R I

2701 GGCCGCCCCGACATGGTGCTTGTTGTCCTCATAGAGCATGGTGATCTTCTCAGTGGCGACCTCCACCAGCTCCAGATCCTGCTGAGAGATGTTGAAGGTC 351 A A G V H H K N D E Y L M T I K E T A V E V L E L D Q Q S I N F T BspHI (2801) AseI (2859)
2801 TTCATGATGGCCCTCCTATAGTGAGTCGTATTATACTATGCCGATATACTATGCCGATGATTAATTGTCAAAACAGCGTGGATGGCGTCTCCAGCTTATC 1/K M
2901 TGACGGTTCACTAAACGAGCTCTGCTTATATAGACCTCCCACCGTACACGCCTACCGCCCATTTGCGTCAATGGGGCGGAGTTGTTACGACATTTGGAA SpeI (3014)
3001
AGTCCCGTTGATTTACTAGTCAAAACAAACTCCCATTGACGTCAATGGGGTGGAGACTTGGAAATCCCCGTGAGTCAAACCGCTATCCACGCCCATTGAT

SnaBI (3142)

3101 GTACTGCCAAAACCGCATCATCATGGTAATAGCGATGACTAATACGTAGATGTACTGCCAAGTAGGAAAGTCCCATAAGGTCATGTACTGGGCATAATGC

NdeI (3247)

3201 CAGGCGGGCCATTTACCGTCATTGACGTCAATAGGGGGCGTACTTGGCATATGATACACTTGATGTACTGCCAAGTGGGCAGTTTACCGTAAATACTCCA
3301
CCCATTGACGTCAATGGAAAGTCCCTATTGGCGTTACTATGGGAACATACGTCATTATTGACGTCAATGGGCGGGGGTCGTTGGGCGGTCAGCCAGGCGG
PacI (3433)
SdaI (3425) PciI (3443)
SbfI (3425) BspLU11I (3443)
3401 GCCATTTACCGTAAGTTATGTAACGCCTGCAGGTTAATTAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGG
3501 CGTITTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTT
3601 TCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCAT
ApaLI (3757)
3701 AGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCG
3801 GTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGC
3901 TACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTT
4001 GGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTITITTGTITGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATC
EagI (4193) PacI (4173) SwaI (4182) NotI (4192)
4101 CTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATITTGGTCATGGCTAGTTAATTAACATTTAAATCAGCGGCCGC

4201 AATAAAATATCTTTATTTTCATTACATCTGTGTGTTGGTTTTTGTGTGAATCGTAACTAACATACGCTCTCCATCAAAACAAAACGAAACAAAACAAAC
4301 TAGCAAAATAGGCTGTCCCCAGTGCAAGTGCAGGTGCCAGAACATTTCTCTATCGAA

